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This paper summarizes an effort which calculated group-averaged Legendre coefficients 
to numerically represent the scattering kernel for X-ray scattering from a relativistic 
Maxwellian distribution of electrons in a multigroup discrete S, treatment of the equation 
of radiative transfer. An ordinary four-term Legendre polynomial expansion of the 
scattering kernel was used in the study. Ten sets of 134~group-averaged Wien weighted 
equilibrium cross section coefficients were calculated for electron temperatures between 
0.5 and 20 keV, with photon energies between 0.05 and 400 keV. The first Legendre 
coefficients satisfy conservation and detailed balance at equilibrium neglecting induced 
effects. These 134-group cross sections can be collapsed to any desired few-group cross- 
section sets using any appropriate weighting function and are suitable for use in X-ray 
transport studies using a discrete S, transport code. 

1. INTRODUCTION 

This paper summarizes a research program which calculated group-averaged 
Legendre coefficients to numerically represent the scattering kernel for X-ray 
scattering from a relativistic Maxwellian distribution of electrons in a multigroup 
discrete S,, treatment of the equation of radiative transfer. 

To date, the exact and complicated scattering kernel has never been incorporated 
directly into radiation-hydrodynamic codes for one or more reasons: The materials 
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temperatures involved were such that photon absorption-emission rates greatly 
exceeded scattering rates; low temperature scattering models or approximations 
were sufficient; and, more importantly, the degree of expansion necessary to ade- 
quately describe this exact kernel was not known, and in past studies only the 
isotropic component was used. 

Recent interest in higher temperatures [l-3], however, has led to several approx- 
imate treatments of the exact kernel and to this research which resulted in a four- 
term Legendre polynomial representation of the kernel suitable for numerical 
solutions to the transport equation. This research was undertaken in response to 
one of the recommendations of the 1969 Defense Atomic Support Agency Confer- 
ence on Radiation Transport [4]. The past and present scattering approximations 
used in X-ray transport codes are briefly summarized below. 

Early X-ray transport studies [5-91 which included photon scattering assumed 
isotropic or classical Thomson scattering [lo] from stationary electrons. A photon 
scattered from a stationary electron in the Thomson model changes its direction 
but does not change energy. The calculation of the exact differential scattering 
cross section for a photon incident on a stationary electron by Klein and Nishina 
[ll], then made higher-order approximations possible [12, 131. In the Klein- 
Nishina model, a scattered photon is decreased in energy and there is a one-to-one 
relationship between the angle of scatter and the final energy given by the Compton 
formula [5]. Recently, Stone and Nelson [14, 15 ] developed a numerical integration 
program which calculated the average differential scattering cross section for a 
photon of frequency V’ and energy hv’ incident on a relativistic Maxwellian distri- 
bution of electrons at temperature T, . Since the electrons are no longer stationary, 
this model allows the photon to increase in energy as well as decrease. The func- 
tional dependence of this scattering kernel is most conveniently expressed as a 
finite Legendre polynomial expansion. 

Any adequate numerical representation of this highly anisotropic scattering 
kernel in a discrete S, model requires at least a three-dimensional array of 
Legendre polynomial coefficients as a function of the initial and final photon 
energies, for each discrete electron distribution temperature. The calculation of 
this array involves three integrations over all possible electron velocities, two over 
initial and final photon group energies, and one over scattering angles for each 
T, . Such a calculation is time-consuming and could be prohibitively expensive. 
Most current multigroup radiation-hydrodynamic codes are limited by storage 
and time limitations to few-group, nonequilibrium diffusion models. This means 
that the kernel has been approximated to date by at most the first Legendre coef- 
ficient, i.e., the isotropic component, in a coarse few-group model. In such a model 
the anisotropic behavior of the kernel has been lost. It is uncertain at this time 
how accurate such few-group treatments are, especially with respect to the proper 
choice of the weighting function used to calculate group-averaged cross sections [4]. 
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Several approximations are presently employed in place of the exact scattering 
kernel. Fraser [16], Freeman [17], Cooper [3], and others [18-221 use a Fokker- 
Plan& expansion of the radiation intensity (photon energy times number flux) in 
a diffusion model. These approximations use various temperature-dependent 
Klein-Nishina type cross-section expansions and involve approximations of the 
scattering terms good for values of the dimensionless electron and photon energies 
given by 

and 

where T, is the electron distribution temperature, R is Boltzmann’s constant, ISV 
is the photon energy, and ?ae2 is the electron rest energy. These approximations are 
further constrained by the assumption that the intensity must be a smoothly vary- 
ing function in energy. Wilson [23] avoids the restrictions on a: and y by employing 
the first Legendre coefficient of the exact kernel in a few-group implicit matrix 
diffusion solution. 

Kalos [24] has recently completed a Monte Carlo study in which for each scat- 
tering encounter his code numerically calculates the exact differential scattering 
cross section. The Monte Carlo method, however, may suffer from poor statistics 
or excessive computer times in one-dimensional problems due to the necessity of 
calculating tens of thousands of photon histories and the complexity of recalcul- 
ating the kernel for each scattering event as opposed to the use of precalculated 
group-averaged cross sections. The S, method [25], however, is well suited to 
incorporating an accurate numerical approximation of the exact scattering kernel 
in a multigroup solution to the equation of radiative transfer. 

The S, method is a numerical method in which the space, angle, and energy 
dependence of the X-ray distribution are described by a discrete averaged value in 
each finite region. Any adequate numerical description of the scattering kernel 
therefore not only calls for determining some compact, accurate approximation to 
the kernel itself, but also determining some optimum mesh size in angle and 
energy. 

The first step in numerically representing the scattering kernel, however, is to 
obtain an accurate many-energy group representation which can later be collapsed 
to any desired compact number of energy groups for a particular problem. An 
ordinary Legendre polynomial expansion was selected to describe the differential 
scattering cross section and a 134-group energy set was used. 

The scattering kernel was investigated for ten different electron distribution 
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temperatures between 0.5 and 20 keV with photon energies between .05 and 
400 keV. These temperatures and photon energies are identified in Table I. 

To incorporate a Legendre polynomial expansion into the discrete S, method 
we must first briefly develop the discrete S, form of the radiative transfer equation. 

TABLE I 

Electron Distribution Temperatures and Photon Energy Groups 

Temperatures 
O=V) 

0.5 

1.0 

1.5 

2.0 

3.0 

4.0 

6.0 

10.0 

15.0 

20.0 

Photon energy Energy 
range group widths 
(kev) WV) 

0.05-0.5 0.05 

0.5-l .4 0.1 

1.4-5.0 0.2 

5.0-15.0 0.5 

15.cb40.0 1.0 

40.0-80.0 2.0 

80.0-160.0 5.0 

160.0-260.0 10.0 

260.0-400.0 20.0 

2. THE DISCRETE FORM OF THE TRANSFER EQUATION 

The equation describing the interaction of photons with matter, the equation of 
radiative transfer, will be presented in this section and specialized to the particular 
problem of interest. The behavior of the scattering kernel will be shown mathemat- 
ically and graphically. The equation of radiative transfer will then be numerically 
approximated by the discrete S, equations. The problem of how to replace the 
exact scattering kernel with precalculated, compact, and accurate group-averaged 
cross sections using the Legendre polynomial method will be examined. Two 
procedures for testing the numerical and physical accuracy of the group-averaged 
cross sections are then discussed. These procedures invoke the principles of cross- 
section conservation and detailed balance at equilibrium. 

The steady state, one-dimensional equation of radiative transfer, written in terms 
of photon number flux N instead of the more conventional radiation intensity I, 
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neglecting induced scattering, and assuming local thermodynamic equilibrium, is 
given by [26] 

= U,‘(V) B(v; T) + j,, j,, u~(v’ + v, 0’ + Q; T,) N(r, Q’, v’) di2’ dv’, (2) 

where 

N(r, 0, V) = photon number flux per steradian, per unit energy 
(#/cmz-set-a-kv), at spatial position r, in direction 1;2, 
at energy Rv, with the flux related to the intensity I by 
Z(r, 0, v) = AvN(r, 0, v)(ergs/cm2-set-fin-k”); 

p = cosine of angle between $ and positive P axis. In a 
plane geometry r is the usual x dimension. while in a 

r=O r=R 

” 

N(r,jil,Ir’) \ 

FIG. 1. Geometry. 
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one-dimensional spherical geometry r is the position 
radius vector. This geometry is illustrated in Fig. 1; 

\O plane geometry 
a = i 1 spherical geometry; 

a,(v) = macroscopic scattering removal cross section (cm-‘); 

u,‘(v) = macroscopic absorption removal cross section corrected 
for induced emission [27] (cm-l); 

&v; 7) = Planck function describing the local equilibrium photon 
number flux distribution at energy Av for a black-body 
temperature T given by 

2(h)2 1 
@Vi T, = c2d2 exp(Rv/RT) - 1 

(#/cm2-set-A&); (3) 

ua(v’ -+ v, 8’ -+ 8; T,) = generalized differential scattering cross section describ- 
ing the average probability of photon scatter from 
frequency v’ to v and from initial direction fi’ to Q for a 
Maxwellian distribution of electrons at temperature T, ; 

d = Planck’s constant (6.625 x 1O-27 erg set); 

Rv = photon energy (ergs or keV, with 1 keV = I .602 x 1O-9 
ergs) ; 

.4 = Boltzmann’s constant (1.38 x lo-l6 erg/deg); 

c = speed of light (2.998 x lOlo cm/set). 

Note at this point no attempt has been made to reduce the two-dimensional 
angular variables 0’ and Q in the scattering source term to the desired one-dimen- 
sional variables II’ and TV, respectively, since no (p’, CL) description of the scattering 
kernel has been developed yet. Note also that energy dependence is denoted by v 
only with R jimplied everywhere. In addition, note the use of B to denote number 
flux as opposed to B which traditionally denotes energy intensity. 

Photon number flux was chosen as the dependent variable in this scattering 
study since it makes possible a direct check on the physical and numerical accuracy 
of group-averaged cross-section sets. This feature will be discussed below. 

The Stone and Nelson kernel representing the average differential scattering 
cross section for a photon of energy fiv’ incident on a relativistic Maxwellian 
distribution of electrons at temperature T, is given by [28] 

u,(v’ + v, I*0 = i? * J=k T,) = j, c?~(v~’ --f v,, ,/L~‘) F(v; T,) & dv, (4) 
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where 

v’, v = incident and scattered photon frequences in observer’s frame (see-I); 

V (,‘, v. = incident and scattered photon frequences in rest frame of a given 
electron (se&); 

p0 , CL,,’ = cosine of angle of scatter in observer’s frame and electron rest frame, 
respectively; 

v = electron velocity (cm/set); 

oKN = Klein-Nishina scattering kernel in.rest frame of a given electron given d 
by 1111 

1 + Y;;” - PO’) I 
cm-‘/str; 

F(V; r,) = relativistic Maxwellian velocity distribution given by [28] 

F(v; T,) = (,zh5/4n&TE)[exp( -,,2h/ffr,)/~~(~~~~2/~~~)]; 

K,(x) = modified Bessel function of order 2, where for x > 1 [29], 

(6) 

D = 1 - fi . v/r; 

D’ = 1 - 0’ . v/c; 

h = (1 - 272/&2)-V; 

N, = electron density (#/cm”); 

y = l;vo~~??tnc2; 

and where 4. , the classical electron radius, is related to the total Thomson cross 
section uT [lo] by 

ur = 87r402/3 = 0.665 x 1O-2” cm2. (7) 

At sufficiently low electron temperatures, i.e., RTe/titc2 Q 1, the differential scat- 
tering cross section reduces to the Klein-Nishina kernel given by Eq, (5), where 
only downscatter is possible. In the limit of low photon frequencies, i.e., 
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1000. 
ELECTRON TEMPERATURE I keV 
INCIDENT PHOTON ENERGY 10 keV 

SCATTER ANGLE & 

FIG. 2. Differential scattering cross section. 

ELECTRON TEMPERATURE I keV 
INCIDENT PHOTON ENERGY IO keV 

6 6 IO I2 I4 

FINAL PHOTON ENERGY IkeV) 

FIG. 3. Angle-integrated cross section. 
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Au/+Hc~ < 1, it reduces further to the classical Thomson differential cross section 
given by [lo] 

u&J = N,(+,2/2)(1 + po2) cm-l/str, 

where the photon only changes direction. 

(8) 

Figure 2 illustrates the typical anisotropic forward scatter for V’ = v and the 
backscatter behavior typical of upscatter and downscatter [15]. Figure 3 illustrates 
the behavior of the angle-integrated cross section of Fig. 2 with its peak at V’ = v 
[30] in a comparison with the ordinary Klein-Nishina cross section for stationary 
electrons where only photon downscatter is allowed. Since there is a one-to-one 
relationship between the angle of scatter and final photon frequency in ordinary 
Klein-Nishina scattering, given by the Compton formula of Eq. (5), only the 
energy limits for Klein-Nishina can be shown in this figure. 

Figure 4 illustrates the behavior of the total cross section for photon energy 
/IV as a function of electron distribution temperature T, , with T, = 0 being the 
Klein-Nishina cross section, and the zero photon energy, zero electron temperature 
limit being the Thomson cross section [15]. 

It should be pointed out here that the total scattering removal cross section 
Go is calculated independently of the differential scattering cross section 

665 

600 

400 

PHOTON ENERGY IkaV) 

FIG. 4. Total cross section. 
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oo(v’ + Y, 0’ + Q; T,) [14]. Also note in Fig. 4 the very slowly varying behavior 
of the total cross section, both as a function of photon energy and electron 
distribution temperature. 

This anisotropic scattering kernel must now be incorporated into the multi- 
group discrete S, method. To obtain the discrete S, equations it is first convenient 
to rewrite the equation of radiative transfer in conservative form. Multiplication 
of the equation in this form by a phase space differential volume results in coef- 
ficients of the partial derivative terms not containing the variable of differentiation. 
In plane geometry with f = 0, Eq. (2) is already in conservative form. In a spher- 
ically symmetric geometry the conservative form is given by 

W%W-WW, II, 41 + (llrWWK1 - p2) Nr, P, v)l 
+ b,(v) + ~(41 JW, p, v> = ~‘(4 h; 0 + Sk, CL, v), (9) 

where the scattering source term, the integral term in Eq. (2), is conveniently 
represented by S(r, p, v). 

The discrete S, solution method then involves operating on the conservative 
form of the transfer equation with the plane or spherical integral operators 

) dv dp dr. 

(10) 

These operators integrate each term of the transfer equation over a finite dif- 
ference cell in (r, p, v) space where the finite cell is described by 

1 
(r,+, - rm)(l*i+l - P~)(vB+~ - vd 

LlVdpdv = or 
(V)4ri+l - rm3)(pj+l - pi)(vk+~ - 4, 

(11) 

for slab and spherical geometries, respectively. The term &+I - & describes the 
cone-shaped region around the positive r^ axis whose inside and outside surfaces 
make angles with i whose cosines are pi and pLj+l , respectively, as shown in Fig. 1. 
Aside from exact differential terms the integrals are treated by the mean-value 
approximation 

I “* xf(x) dx z jzf(x) Ax, 
21 (12) 

where X may be adjusted to preserve the equality [31]. 
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These operators lead to a representation of the X-ray flux in terms of a discrete 
number of spatial intervals, a discrete number of angular directions, and a discrete 
number of energy groups. 

Following the notation of Mynatt [31], application of the above operators 
results in the spherical discrete S, equations given by 

where 

pi+l,2 = discrete direction cosine of J-th cosine interval; 

Ap, = pj+r - pi = width of J-th cosine interval; 

A, = 4n-rTn2; 

= G - pi+l/z 4-4&n+, - 4,W Cl = 0; 

V, = 4rr(rk+1 - rm3)/3; 

(14) 

ULz 0 K, (T K = energy group-averaged total absorption and scattering removal cross 
sections, the absorption coefficient corrected for induced emission; 

and where the integral term of Eq. (2) is represented by 

where 

S(M, J, K) = V, 1 c A~,‘;j%‘(M, J’, K’), (15) 
K’ J’ 

A;:; = generalized group-averaged scattering cross section describing the scat- 
tering from energy group K’ to K and from direction cosine interval J’ 
to J. 

The five fluxes in Eq. (13) are related as in Fig. 5. The equations retain the same 
form in a one-dimensional plane geometry except that 

Cj = 0, 
A, = 1, 

V, = r,,, - rm . 

The problem now is to calculate the group-averaged cross sections AF:F in 
the most accurate, compact form in order to minimize computer storage require- 

581/11/z-9 
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FIG. 5. Discrete S,, fluxes. 

ments and calculation time. An ordinary Legendre polynomial expansion was 
selected for study, and, as will be shown in this paper, is adequate to represent the 
kernel. The Legendre polynomial method is discussed in detail in the next section. 
The accuracy of the group-averaged cross sections will be tested by the principles 
of conservation and detailed balance introduced below. In the absence of induced 
effects, the equilibrium solution of the radiative transfer equation is given by the 
Wien distribution m(v), rather than the Planck black-body distribution B(v) [20]. 
These distributions are given by 

i@(v) = C(h)* exp(-z&/&T), 

B(V) = [2(~~)“/~“~][exp(~~/~~) -11-l, 
(16) 

where C is the total photon flux and T is the characteristic black-body radiation 
temperature. Again, note the use of I8 and i3 to denote photon number flux. The 
normalized Wien and Planck distributions are compared in Fig. 6. 

The principle of detailed balance [27], also referred to as microscopic reversibil- 
ity, states that at equilibrium any photon-matter interaction reaction rate and its 
inverse rate must be identical. For example, for photon-electron scattering within 
a black-body cavity, with a photon field in equilibrium with a distribution of 
electrons, detailed balance requires that 

u,(u - v’, sf! --)r c?‘) m(v) = CrJv’ ---f v, si’ * Q) Gyv’). (17) 

At this point note that only upscatter or downscatter cross sections plus the cross 
section for V’ = v need to be calculated from first principles. The remaining cross 
sections can be obtained from this equation. Equation (17) implies that the scat- 
tering removal term of the radiative transfer equation must be identical to the 
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FIG. 6. Wien and Planck distribution functions. 

scattering source term at equilibrium. This can be demonstrated by integrating 
Eq. (17) over all 0’ and D’ obtaining 

I@(v) j,. j,. uo(v + v’, 0 --f 0) dQ’ dv’ 

zzz 
jj 

ud(v’ 3 v, Q’ 3 0) 7@(d) dQ’ dv’. (18) 
Y’ R’ 

Cross-section conservation is guaranteed in the following way. The total scat- 
tering removal cross section a,(v) is given by 

u,(v) = j,, j,,, uo(v + v’, 0 + si’) dQ’ dv’ ; (19) 

so Eq. (18) reduces to a “macroscopic” statement of detailed balance, namely, 

uo(v) w) = j,;, jQ, ud(v ’ - v, Q’ + 0) #‘(v’) dQ’ dv’. (20) 
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Equation (19) is the definition used in this paper for a “conservative” scattering 
cross-section set, i.e., one in which photons are neither artificially created nor 
destroyed in a scattering process. Note that while an approximately calculated 
cross-section set may be arbitrarily close to satisfying detailed balance at equilib- 
rium and therefore “physically acceptable,” the set must also be exactly conserva- 
tive to prevent the introduction of artificial sinks or sources of photons. The 
group-averaged cross-section sets to be obtained in this study must satisfy 
Eqs. (17) and (19). 

Group-averaged cross sections were calculated for the ten electron distribution 
temperatures given in Table I and for photon energies in the range 0.05 < Rv < 
400 keV. One hundred thirty-four energy groups were employed using Wilson’s 
set [30], also given in Table 1. A large number of energy groups were needed for 
an accurate calculation of the cross sections because of the strong exponential 
behavior of both the kernel and the weighting function used for group averaging. 

3. GROUP AVERAGED CROSS SECTIONS 

The Legendre polynomial method for representing the scattering kernel is 
examined in this section. Each of the group-averaged Legendre coefficients is 
calculated by one of four different approximate integration methods, since no 
closed form analytical expression for the cross section can be obtained. The first 
method is an ordinary trapezoidal numerical integration using the Stone and 
Nelson code [15]. This numerical integration is extremely time-consuming and 
will be avoided wherever possible. As an alternative, the known continuous 
behavior of the cross-section coefficients is used to assume a particular approximate 
analytical form for the group-averaged cross sections, and three different expo- 
nential and linear fits are used to obtain analytical approximations to the cross 
sections in place of lengthy numerical integrations. The calculated cross sections 
are then corrected to satisfy conservation and detailed balance. 

The ordinary Legendre polynomial expansion of the differential scattering cross 
section is given by [32] 

where the u&v’ -+ IJ) are the continuous Legendre coefficients, P&J are the 
Legendre polynomials, and where, in practice, the 8 summation must be truncated 
at some small value of b (LMAX). The Legendre coefficients are obtained from 
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Using this Legendre polynomial expansion of the scattering cross section in a 
one-dimensional, multigroup, discrete S, formulation reduces the scattering 
source term of Eq. (13) to 

KMAX JMAX 

SCM J, K) = VA4 c 
LMAX 2c + 1 

K’s1 
1 N(M, J’, K’) d/w 1 --j-- 

J’=l l=O 

(23) 
where 

K’+K 
odt = Cth group-averaged Legendre coefficients of the scattering cross section 

describing scatter from group K’ to group K; 

Pt(pJ) = Gth Legendre polynomial evaluated at pj+t,e , i.e., the discrete direction 
cosine for the J-th cosine interval. 

The transformation from scattering angle p,, representation to a &, FL’) depend- 
ence is obtained from the addition theorem of spherical harmonics 

G (G-q)! P&o) = PC(P) PdP’) + 2 c ___ p&4 Pf?(P’) cm 4(4’ - 4). 
n-1 ce+ 4)! 

(24) 

Integrating the azmuithal angle 4 over 2~ in one-dimensional geometries causes 
the second term to vanish and one may simply use 

with 
(2 5) 

P&L) = 1.5 $ - 0.5, 
P3(p) = 2.5 p3 - 1.5 /A, 

(26) 

The discrete angular directions and cosine intervals that could be used are 
double Pnizel sets where II is the total number of discrete angular intervals. Both 
the usual P,-, method and the double Pn,2-1 method are based on Gauss-Legendre 
quadrature, i.e., the discrete angular directions are the zeros of the Legendre 
polynomials. The P,-, set is obtained from Gauss-Legendre quadrature on 
[- 1, l] while DPnllpl arises from separate quadratures on [- 1, 0] and [0, 11. 
These DP,,,-, sets are recommended for all one-dimensional, optically thin prob- 
lems and can be found in [33]. These sets are preferred for optically thin slab 
problems since they permit a discontinuous polynomial representation on each 
half-range of integration and therefore lead to a better angular representation of 
the transmission and reflection. 
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It should be noted at this point that a truncated Legendre polynomial expansion 
may lead to a cross-section representation with negative cross-section regions as 
well as artificially high cross-section regions. For example, a P, expansion of the 
upscatter and downscatter cross sections of Fig. 2 would be a sloped straight-line 
representation which would become negative at some value of p0 < 0. On the 
other hand, a P, expansion for these same cross sections may approximate the 
curve better near p0 = - 1, but would lead to a parabolic shape with a significant 
but totally erroneous positive cross section for p. :> 0. 

The first four group-averaged cross sections are calculated in the standard way 
by ~321 

“ktl 
s s 

vc’ +* 

K'-+K = *k %' 
Q(V’ --f v; T,) f(v’; T) dv’ dv 

us! 

.c 
“k’+l.f(v’; T) dv’ ’ 

(27) 

where f(v’; T) is an appropriate weighting function which ideally has the same or 
similar v’ dependence as the unknown local radiation flux N(r, p’, v’). A Wien- 
or Planckian-like weighting function may also be characterized by a black-body 
temperature T, not necessarily the same as T, , Since induced scattering is neglected 
in this problem and since the accuracy of the first coefficients u$,‘+~ is to be checked 
at equilibrium, the Wien function, given by the first of Eqs. (16), is used for 
f(v’; T), and only equilibrium cross sections, i.e., T = T, are calculated. 

Note that the Planck function should be used as the weighting function when 
induced effects are included. In the limit of very narrow energy groups, unity 
may be used since over such a small group any smooth weighting function may 
be assumed to be nearly constant. 

Only slight differences were observed using Wien, Planck, or unity weighting 
functions for such a large number of energy groups except at large and small 
values of u = Rv/RT which are relatively unimportant. 

Therefore these many-group equilibrium cross sections can be collapsed to few- 
group sets using the equilibrium weighting function or any other weighting func- 
tion providing that the weighting function lies within the energy interval 
0.05-400 keV. 

Had the transfer equation been written in terms of radiation intensity, Eq. (27) 
above would have had a V/V' in the integrand of the numerator andf(v’; T) would 
have been the Wien intensity function (Av) x p(v). 

A preliminary study of the scattering kernel by the author indicated that 
L < 3, i.e., a four-term expansion, should be sufficient to adequately describe the 
scatter except perhaps for the case where v’ = v. In that case illustrated in Fig. 2, 
the kernel is strongly peaked in the forward direction. However, it was found that 
the addition of higher-order terms led to more negative cross-section regions and 
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false high positive cross-section peaks with little or no improvement in the rep- 
resentation of the kernel in the forward direction, i.e., 0.9 < p,, < 1. Since for 
v’ # v the kernel is usually monotonic and peaked in the backward direction 
(pO = -1) as few as two terms, i.e., a straight dependence, may be desirable to 
avoid extraneous positive sources in other directions. 

The discrete Legendre coefficients were obtained from Wilson’s tabulated 
values [30] in which he calculated the first four discrete coefficients by means of 
Eq. (22), using a 512-point Gauss quadrature for v’ # v and a 1024-point quadrature 
for v’ = v with 512 points in the interval 0.98 < p0 < 1. The curve for v’ = v 
in Fig. 2 illustrates the forward-scatter behavior and the need for a high-order 
asymmetric quadrature in Eq. (27) above. 

Note again that while Wilson’s coefficients are point values for a discrete initial 
photon energy and a discrete final photon energy, they are not group-averaged 
coefficients. Their existence and the known continuous behavior of the integrand 
of Eq. (27) made possible the three fast and approximate integration techniques 
to be described below for obtaining the group-averaged Legendre coefficients. 
Accurate coefficients were therefore obtained in most cases without resorting to 
expensive numerical integrations of Eqs. (4), (22), and (27), in that order. It should 
also be pointed out again that while Wilson calculated the first four Legendre 
coefficients, he only used an approximate fit for the first coefficient in a few-group 
diffusion code. 

The behavior of udO(v + v), illustrated in Figs. 3 and 7 [30], and the prohibitive 
computer time required to integrate Eqs. (4), (22), and (27) numerically led to the 
preliminary decision to assume an exponential fit to the integrand in Eq. (27) of 
the form 

udo(v ---f v)f(v’; T) c~ C, exp(C,v) exp(C,v’). (28) 

An algebraic expression could then be obtained for the cross section in many 
instances, rather than resort to a time-consuming numerical integration. The sharp 
discontinuity in slope of odO(v’ --f v) along the diagonal v’ = v, as illustrated in 
Fig. 7, and the availability of only three constants in Eq. (28) then dictated that 
within any dv dv’ region the assumed exponential fit be made over two triangular 
regions with their common hypotenuse parallel to the diagonal v’ = v. This fit 
is illustrated in Fig. 8. For coefficients off the diagonal, this fitting method intro- 
duces a discontinuity in slope on the surface of integration parallel to the diagonal. 
This effect is negligible, however, due to the exponential behavior of the 
integrand. 

In this method the first coefficient, or angle-integrated cross section, is given by 

(JO0 K"K = Q(K',K)/wK', (29) 
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FIG. 8. Exponential fit to first coefficient. 
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where 

Q(K’, K) = A ____ CexpWk,, + gvk,+J - exp(dv, + gvk,)] 
g(d + gh) 

- $j [ev(dvk+l + gv,,) - exp(dv, + gw)] 

b(u -F bh) bxp@vk+l + bv,,+,) - exp(avk + bw)l 

-t c bp(av,,, + nb b vk,+d - exp(av, -t &,+,)I, (30) 

h = (vk,+l - vk’Mvk+l - Vk), 

1 
s= ln wvk,+l) %Jh~~+l- vk+l) vk’+l - Vk’ [ bv(Vkf) %l(Vk~ + vk+l) 1 , 
A = l@(~,~) a,,,(~~, -+ VJ exp(--dv,) exp(-gv,,), 

u = (vk+l - vk)-l hb~o(vk’+l + Vk+l)/%,h~‘+l - vk)l? 

b= ’ ln ~~vkr+l) 

[ 

%,(vk~+l- Vk) 

vk'+l - Vk Wk4 %,(Vk~ + v3 I ' 

c = rqv,*) (J&k’ --f Vk) exp(--au,) exp(-bv,,), 

and the denominator F@ of Eq. (29) may be obtained from 

@K’ = 

s 

W;1 

@‘(v’; T) dv’ = T3 exp(-u,,)[uE, t 224 + 21 
Uk’ 

where 

- T3ex~(--uk~+l)[&+1 i- ~uP+~ + 21, 

and 

(31) 

Note the use of a lower subscript k’, k’ + 1, k, or k + 1 to denote initial or 
final photon frequencies, respectively. This should not be confused with an unsub- 
scripted k in the denominator which is Boltzmann’s constant, or upper case K 
or K’ denoting an energy group, or group averaged quantity. 
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At small values of u = h/RT along an near the diagonal v’ = v, it was found 
that an exponential fit underestimated uUO K’-K It was therefore necessary to numer- . 
ically integrate the integrand of Eq. (27) using a 10 x 10 mesh within each region- 
making use of the Stone and Nelson code instead of Wilson’s coefficients. Care 
was taken at low frequencies to make sure that az*K < adK < ur . This numerical 
integration was performed for all ten electron distribution temperatures within the 
region described by 

1 -<, K < 40, 

K-2<KK'<K+2, 
(32) 

i.e., the diagonal term and the two terms above and below the diagonal. The 
10 x 10 mesh was determined to be accurate enough since halving the mesh size 
for the worst expected cases led to a 2 “/o or less change in the coefficient at a cost 
of a factor of four in computing time. Both upscatter and downscatter coefficients 
were calculated by the fast exponential fitting routine described above to test the 
validity of the assumed fit over all regions. The continuous upscatter coefficients 
were observed always to behave exponentially, while for u > 1 downscatter 
coefficients sometimes varied less than exponentially, as illustrated in Fig. 7. 

To summarize, the existence of the Wilson set of discrete Legendre coefficients 
and the known exponential behavior of the integrand of Eq. (27) made it possible 
to use an approximate exponential integration technique for many of the first 
Legendre coefficients. The method did not work satisfactorily at low photon 
energies on and along the diagonal v’ = v and it was necessary to use the Stone 
and Nelson code for the differential scattering cross section itself in a numerical 
integration. The next step was to determine both the numerical and physical 
accuracy of these angle-integrated, group-averaged cross sections. 

The physical accuracy of the first Legendre coefficient was determined by cal- 
culating the ratio of the scattering source term to the scattering removal term at 
equilibrium, which, by the principle of detailed balance discussed above should 
be identically unity. In the Legendre polynomial expansion, this ratio is given by 

RK = c ~,Kb+~@~‘j/u,~w~. 
K’ 

(33) 

Note that the use of the isotropic equilibrium Wien distribution @’ in Eq. (23) 
causes the $ summation to vanish identically for 6 > 0 since the orthogonality of 
the Legendre polynomials requires that 

(34) 
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or, equivalently, 

; P&w) 4-w = 0, G # 0 

for any symmetric direction cosine set. This ratio was calculated for each of the 
134 energy groups and ten electron distribution temperatures of Table I. For this 
range of energies and temperatures RK = 1.00 f .01 for all groups except the 
lowest and highest 5-10 relatively unimportant groups. In these groups numerical 
errors may have been large or some downscatter or upscatter probabilities were 
not accounted for since the energy domain extended from 0.05 to 400 keV and not 
from zero to infinity. 

From Eq. (20), detailed balance for a Legendre polynomial expansion of the 
scattering kernel in a multigroup model using the Wien equilibrium distribution 
requires that 

uJK~K = c &‘K@. 
K’ 

Cross-section conservation, from Eq. (I 9), requires that 

uaK = ; cry”‘. (36) 

If one attempts to satisfy both conditions simultaneously by substituting 
Eq. (36) into Eq. (35), the within-group term involving u;*” cancels and the 
resulting equation is satisfied by the group representation of detailed balance 

i.e., the “microscopic” statement of detailed balance equivalent to Eq. (17). Since 
the within-group scattering cross section cancels in Eq. (36), it is necessary to 
invoke conservation arguments to modify the diagonal term ~2”“. Both conserva- 
tion and detailed balance were satisfied simultaneously in the following manner. 
The initial numerical integrations and exponential fits yielded upscatter and down- 
scatter coefficients which were close to satisfying detailed balance and conserva- 
tion, i.e., comparisons with finer numerical integrations indicated that any one 
coefficient was in error by at most 2 %. Starting with the lowest energy group 
K = I, a check was made for conservation. The total removal cross section aoK, 
calculated independently of the group-to-group coefficients, &‘+K [14], was 
assumed correct due to its very slowly varying behavior, as illustrated in Fig. 4. 
lf, on this conservation check, Eq. (36) was within 1 7; or less of being satisfied, 
only the dominant and inherently most inaccurate term, the diagonal term, was 
scaled to achieve conservation. If Eq. (36) was not within 1 % of being satisfied, 
the diagonal plus the first two upscatter terms, which had also been numerically 
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FIG. 9. Scaling of group-average coefficient. 

integrated, were scaled to achieve conservation (Figure 9 illustrates this scaling 
procedure). Only the dominant upscatter terms on and near the diagonal were 
scaled so that errors in these terms would not be propagated into higher energy 
groups. All corresponding downscatter coefficients were then recomputed by 
means of Eq. (37) to guarantee detailed balance. 

Upscatter cross sections were scaled rather than downscatter coefficients for 
three reasons. First, since at the highest electron temperatures considered, i.e., 
l&20 keV, the energy groups extended only as far as u = 40 and u = 20, respec- 
tively, any significant deficiencies in total scattering removal, if any, should be 
attributed to scattering probabilities to energy groups beyond 400 keV. Upscatter 
scaling within the highest groups ensures that the missing photons are scattered 
up in energy or remain unaffected and not falsely scattered down. Second, the 
deficiencies in upscatters at high electron temperatures were assumed greater than 
the effects of missing downscatters to energies less than 0.05 keV at any temperature 
and this method then left unaccounted-for downscatter, if any, in or near the 
diagonal group. Third, the assumption of an exponential behavior for the cross 
section was always correct for upscatters as discussed previously and these 
upscatters therefore had smaller expected errors. 

This scaling process was carried out to u = 40 or the highest energy group, 
whichever was smaller, for conservation, and extended to u = 50, or the highest 
group, for detailed balance as illustrated in Fig. 9. This insured that any desired 
few-group sets would be accurate to tl = 30, or twice the value at which 100% 



COMPTON SCATTERING IN THE & METHOD 291 

of the Wien distribution has been accounted for. Higher coefficients were left 
unchanged, since, using Wien weighting, they would not contribute to the few- 
group, cross-section sets to be obtained for u < 30. 
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FIG. 10. First group-averaged coefficient. 

Figure 10 illustrates the behavior of uO,, K’+K for T, = 0.5 and 20 keV. The large 
discontinuities in the histogram plots are due to a change in the absolute width 
of the energy groups. If equal-width energy groups had been used, these histo- 
grams would have been smooth, displaying a monotonic decrease with increasing 
photon energy. 

The behavior of a,!(~’ + v) for L > 0, as illustrated in Fig. 11 [30], led to the 
second and third approximate integration methods which used a three-point 
linear fit to the integrand of Eq. (27) in each triangular region along the diagonal 
for v’ = v, and a four-point average value approach off the diagonal, with the 
added check that for G > 0, / ~5.‘~ 1 < u$““. Mathematically, 

uot K+K = Q’(K, K)lwK, (38) 
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where 

Q’W’, K) 

and 

where 

I8 

i 
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16 
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FIG. 11. Second Legendre coefficient. 

us’” = Q”(K’, K)/mK’, 

QYK’, K) = (1/4)(~,+, - VB)(W+I - w) 

x Wbk,) %&kT 3 Vk) + mvk’+l) %c(vk’+I - %-+I) 

+ WVk,) dvkr - Vk,l> + wvk*+l) %t(vk’+l - VJI 

with l@’ given by Eq. (31). These fits are illustrated in Fig. 12. 

+ 
‘k+l ) 

(39) 

(40) 

(41) 

Again at small values of u it was necessary to resort to a numerical integration. 
These integrations were performed over the same domain as described in Eq. (32). 
No accuracy tests such as detailed balance and conservation are possible for these 
higher-order coefficients. The accuracy of the numerical integration was verified 
by halving the mesh size for the worst possible cases and observing that there was 
at most less than a 2 ‘A change in any coefficient. During the scaling process 
described above for uZ+~, the higher-order, within-group coefficients and upscatter 
coefficients were scaled exactly as their companion zeroth order or first coefficient 
to insure that i az+K 1 < u~COI+~. The downscatter coefficients were then recal- 
culated from detailed balance via Eq. (37). 
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FIG. 12. Linear fit to higher order coefficients. 

4. RESULTS 

The exact differential scattering cross section given by Eq. (3) can be adequately 
represented by a few-term Legendre polynomial expansion if care is taken to 
integrate Eq. (11) accurately. The group-averaged cross sections can be calculated 
with a minimum of computer time by assuming an exponential fit for D%+~ and 
appropriate linear fits for gdo K’+K, G > 0, in all regions except for small values of u 
or near the diagonal groups where K’ N K. The work described above resulted in 
ten sets of group-averaged Legendre coefficients, one set for each electron distribu- 
tion temperature. Each set is composed of the first four Legendre coefficients, and 
each coefficient is represented in a 134-group matrix denoting scatter from some 
initial-energy group to some final-energy group. These are equilibrium cross 
sections in that the temperature of the weighting function is the same as the 
electron distribution temperature. All these cross sections are exact insofar as they 
are conservative and satisfy detailed balance at equilibrium. These cross sections 
can be collapsed to any desired number of energy groups for use in X-ray trans- 
mission studies and are available from the authors. The question of how many 
energy groups, spatial directions, and Legendre coefficients are needed to ade- 
quately represent the exact scattering kernel is very problem-sensitive and must 
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be answered by a detailed parametric transport study, e.g., transmission of a 
particular Wien or Planckian source through a region of free electrons. The 
number of energy groups needed to describe the scattering is strongly dependent 
on the relationship between the local electron temperature and the characteristic 
radiation temperature everywhere in the region and the proper selection of a 
weighting function used to precalculate group-averaged cross sections. 

5. ACKNOWLEDGMENTS 

This work was funded by the Defense Nuclear Agency. The authors would like to thank 
Dr. W. Whitaker of the Air Force Weapons Laboratory, 133. 

2. H. L. WILSON, J. Comput. Phys., to appear. 
3. G. Cooled, “A Compton Fokker-Planck Equation for Hot Plasmas,” UCRL 72345, Lawrence 

Radiation Laboratory, 1970. 
4. Defense Atomic Support Agency, “Proceedings of the 1969 Conference on Radiation Trans- 

port,” 3 SCR-166-1, System, Science and Software, Inc., La Jolla, Ca., 1969. 
5. S. CHANDRASEKHAR, “Radiative Transfer,” Dover, New York, 1960. 
6. S. CHANDRASEKHAR, Astrophys. J. 103 (1946), 165; see also entire series of 25 papers with 

this title in Vols. 99-108. 
7. R. O’ROURKE, Phys. Rev. 85 (1952), 881; 89 (1953), 999. 
8. A. CODE, Astrophys. J. 149 (1959), 734. 
9. P. DIRAC, Mon. Not. Roy. Astr. Sot. 85 (1925), 825. 

10. J. BOND, K. WATSON, AND J. WELCH, “Atomic Theory of Gas Dynamites,” p. 123, Addison- 
Wesley, Reading, MA., 1965. 

11. 0. KLEIN AND Y. NISHINA, as given in B. Leighton, “Principles of Modern Physics,” 
pp. 432434, McGraw-Hill, New York, 1965. 

12. F. EDMONDS, Astrophys. J. 117 (1953), 298; 119 (1954), 58, 425. 
13. D. SAMPSON, Astrophys. J. 129 (1959), 734. 
14. S. STONE AND R. NELSON, “Compton Scattering from Relativistic Electrons,” UCRL- 

14918-T, Lawrence Radiation Laboratory, 1966. 
15. R. NELSON, “Compton Scattering from Relativistic Electrons,” Tl-006, Computer Informa- 

tion Center, Lawrence Radiation Laboratory, Nov. 1966. 
16. A. FRASER, “The Fundamental Equations of Radiation Hydrodynamics,” AWRE O-82/65, 

United Kingdom Atomic Energy Authority, Aldermaston, England, 1965. 
17. B. FREEMAN, “Compton and Inverse Compton Scattering,” GAMD-7475, Gulf General 

Atomic, San Diego, Ca., 1966. 
18. J. PALMER, “A Numerical Scheme for First Order Compton Scattering,” GAMD-7592, 

Gulf General Atomic, San Diego, Ca., 1966. 



COMPTON SCATTERING IN THE & METHOD 295 

19. G. POMRANING, “Simple Treatment of Compton and Inverse Compton Scattering,” GAMD- 
8271, Gulf General Atomic, San Diego, Ca., 1967. 

20. G. POMRANING, J. Quant. Spectr. Radiative Transfer 8 (1968), 909, 1087; 9 (1969), 407, 1011. 
21. G. POMRANMG, Astrophys. J. 152 (1968), 809. 
22. B. FREEMAN, “The Vera Code, A 1-D Radiation Hydrodynamics Program,” DASA 2135, 

System, Science, and Software Inc., La Jolla, Ca., 1969. 
23. H. WILSON, W. LINDLEY, AND L. MATIXON, “Theoretical and Computational Radiation 

Hydrodynamics,” Vol. 2, GA-9530, Gulf Genera1 Atomic, San Diego, 1969. 
24. M. KALOS, “Penetration of Photons Through a Hot Electron Gas,” DASA-2556, Mathe- 

matical Applications Group, Inc., White Plains, NY, 1970. 
25. K. LATHROP, “DTF-IV, a FORTRAN-IV Program for Solving the Multigroup Transport 

Equation with Anisotropic Scattering,” LA 3373, Los Alamos Scientific Laboratory, 1965. 
26. G. POMRANING, Znt. J. Heat Mass Transfer 12 (1969), 81. 
27. YA. B. ZELDOVICH AND Yu. P. RAIZER, “Physics of Shock Waves and High Temperature 

Hydrodynamic Phenomena,” Vol. I, Academic Press, New York, 1966. 
28. G. POMRANING, “Lorentz Transformation of the Equation of Radiative Transfer,” GA-9035, 

Gulf General Atomic, San Diego, 1968. 
29. M. ABRAMOWITZ AND I. STEGUN, “Handbook of Mathematical Functions,” Dover, New 

York, 1965. 
30. H. WILSON, G. POMRANING, AND L. MATTESON, “Tabulation of the Compton and Inverse 

Compton Scattering Cross Section,” GA-9694, Gulf General Atomic, San Diego, 1969. 
31. F. MYNATT, The discrete ordinates method in problems involving deep penetrations, in 

“A Review of the Discrete Ordinates S, Method for Radiation Transport Calculations,” 
ORNL-RSIC-19, Oak Ridge National Laboratory, March 1968. 

32. K. LATHROP, Nucl. Sci. Eng. 21 (1965), 498; 24 (1966), 381. 
33. B. G. CARLSON AND C. E. LEE, “Mechanical Quadrature and the Transport Equation,” 

LAMS 2573, Los Alamos Scientific Laboratory, 1961. 

581/11/z-10 


